Crowd explicit sentiment analysis

نویسندگان

  • Arturo Montejo Ráez
  • Manuel Carlos Díaz-Galiano
  • Fernando Martínez Santiago
  • Luis Alfonso Ureña López
چکیده

With the rapid growth of data generated by social web applications new paradigms in the generation of knowledge are opening. This paper introduces Crowd Explicit Sentiment Analysis (CESA) as an approach for sentiment analysis in social media environments. Similar to Explicit Semantic Analysis, microblog posts are indexed by a predefined collection of documents. In CESA, these documents are built up from common emotional expressions in social streams. In this way, texts are projected to feelings or emotions. This process is performed within a Latent Semantic Analysis. A few simple regular expressions (e.g. ‘‘I feel X’’, considering X a term representing an emotion or feeling) are used to scratch the enormous flow of micro-blog posts to generate a textual representation of an emotional state with clear polarity value (e.g. angry, happy, sad, confident, etc.). In this way, new posts can be indexed by these feelings according to the distance to their textual representation. The approach is suitable in many scenarios dealing with social media publications and can be implemented in other languages with little effort. In particular, we have evaluated the system on Polarity Classification with both English and Spanish data sets. The results show that CESA is a valid solution for sentiment analysis and that similar approaches for model building from the continuous flow of posts could be exploited in other scenarios. 2014 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Capture with the Crowd: Exploring the Continuum of Implicit to Explicit

The crowd can provide a tremendous amount of data to help us understand the world around us. Data from social network sites, such as Twitter, allow us to implicitly mine data from the crowd, for example to understand different opinions on political issues, the important moments in an event, or the sentiment around particular brands. Other systems, such as CreekWatch, ask members of the crowd to...

متن کامل

A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis

Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...

متن کامل

Dynamic Allocation of Crowd Contributions for Sentiment Analysis during the 2016 U.S. Presidential Election

Opinions about the 2016 U.S. Presidential Candidates have been expressed in millions of tweets that are challenging to analyze automatically. Crowdsourcing the analysis of political tweets effectively is also difficult, due to large inter-rater disagreements when sarcasm is involved. Each tweet is typically analyzed by a fixed number of workers and majority voting. We here propose a crowdsourci...

متن کامل

A Time and Sentiment Unification Model for Personalized Recommendation

With the rapid development of social media, personalized recommendation has become an essential means to help people discover attractive and interesting items. Intuitively, users buying items online are influenced not only by their preferences and public attentions, but also by the crowd sentiment (i.e., the word of mouth) to the items. Specifically, users are likely to refuse an item whose mos...

متن کامل

T-Crowd: Effective Crowdsourcing for Tabular Data

Crowdsourcing employs human workers to solve computerhard problems, such as data cleaning, entity resolution, and sentiment analysis. When crowdsourcing tabular data, e.g., the attribute values of an entity set, a worker’s answers on the different attributes (e.g., the nationality and age of a celebrity star) are often treated independently. This assumption is not always true and can lead to su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2014